Invariant and Type Inference for Matrices

نویسندگان

  • Thomas A. Henzinger
  • Thibaud Hottelier
  • Laura Kovács
  • Andrei Voronkov
چکیده

We present a loop property generation method for loops iterating over multi-dimensional arrays. When used on matrices, our method is able to infer their shapes (also called types), such as upper-triangular, diagonal, etc. To generate loop properties, we first transform a nested loop iterating over a multidimensional array into an equivalent collection of unnested loops. Then, we infer quantified loop invariants for each unnested loop using a generalization of a recurrence-based invariant generation technique. These loop invariants give us conditions on matrices from which we can derive matrix types automatically using theorem provers. Invariant generation is implemented in the software package Aligator and types are derived by theorem provers and SMT solvers, including Vampire and Z3. When run on the Java matrix package JAMA, our tool was able to infer automatically all matrix types describing the matrix shapes guaranteed by JAMA’s API.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION

Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...

متن کامل

Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm

Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...

متن کامل

Robust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties

In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...

متن کامل

Geometry of Random Toeplitz-Block Sensing Matrices: Bounds and Implications for Sparse Signal Processing

A rich body of literature has emerged during the last decade that seeks to exploit the sparsity of a signal for a reduction in the number of measurements required for various inference tasks. Much of the initial work in this direction has been for the case when the measurements correspond to a projection of the signal of interest onto the column space of (sub)Gaussian and subsampled Fourier mat...

متن کامل

Lower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces

Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010